
UCRL-JC-132908
Preprint

Description of a Parallel, 3D, Finite Element,
Hydrodynamics-Diffusion Code

A. I. Shestakov
J. L. Milovich
M. K. Prasad

This paper was prepared for submittal to
NAFEMS Conference

Newport, Rhode Island
April 25-28,1999

April 1,1999

This is a preprint of a paper intended for publication in a journal or proceed&<
Since changes may be made before publication, this preprint is made available
with the understanding that it will not be cited or reproduced without the
permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned nghts. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendaticm, or favoring by the Umted States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

Description of a parallel, 3D, finite element,
hydrodynamics-diffusion code*

A. I. Shestakovt J. L. Milovicht M. K. Prasadg

Abstract

We describe a parallel, 3D, unstructured grid finite element,
hydrodynamic diffusion code for inertial confinement fusion (ICF)
applications and the ancillary software used to run it. The code
system is divided into two entities, a controller and a stand-alone
physics code. The code system may reside on different computers;
the controller on the user’s workstation and the physics code
on a supercomputer. The physics code is composed of separate
hydrodynamic, equation-of-state, laser energy deposition, heat
conduction, and radiation transport packages and is parallelized
for distributed memory architectures. For parallelization, a SPMD
model is adopted; the domain is decomposed into a disjoint
collection of subdomains, one per processing element (PE). The
PEs communicate using MPI. The code is used to simulate the
hydrodynamic implosion of a spherical bubble.

1 Introduction
This paper describes the ICF3D code system, initially written to simulate
inertial confinement fusion (ICF) experiments generating high tempera-
ture plasmas. The system consists of two separate entities, a controller
and the physics code itself. However, in the following, ICF3D refers to
the physics code while controller refers to the code with which the user
interacts. The controller is used to define problems, construct meshes,
visualize results, and for runs on massively parallel platforms (MPP), to
partition the domain into a collection of subdomains, one per processing
element (PE). The controller runs on the user’s workstation. ICF3D, on
the other hand, may reside on another computer; possibly a remotely

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract uumber W-7405-ENG-48.

+Lawrence Livermore National Laboratory, POB 808 L-38, Livermore, CA 94550
$Lawrence Livermore National Laboratory, POB 808 L-561, Livermore, CA 94550
§Lawrence Livermore National Laboratory, POB 808 L-38, Livermore, CA 94550

1

2

located MPP. This design allows maximum utilization of a supercom-
puter as a number cruncher by not taxing it with tasks more suited to
workstations.

Once the problem is specified (proper input files created, etc.),
control is passed to ICFSD. This requires establishing a link over the
network between the user’s interactive session with the controller and
the physics code. After passing control, ICF3D performs the calculation
then returns the results to the controller. Control passing is made via
UNIX socket programming. The controller and ICF3D are written in
different languages in order to take advantage of features specific to
them. Controller modules are themselves written in several languages,
Python [I], FORTRAN, and C++. The physics code, on the other hand,
is entirely written in C++.

The remainder of this paper is organized as follows: The following
section describes the controller. Section 3 gives a brief overview of the
physics code, its modules, and the parallelization methodology. Only
ICF3D is parallelized since that is the computationally intensive part.
Section 4 contains a simulation of a hydrodynamic implosion and 5 5 is
a summary.

2 ICFSD controller
ICF3D’s execution is controlled via the object oriented (00) scripting
language Python [l] which also provides a very limited steering capability.
Steering allows the user to directly interact with the code modules and
data. Unfortunately, this requires that the controller and physics code
be tightly coupled, something difficult to fulfill on MPP. In addition,
since controllers use interactive languages, a tightly coupled system puts
the additional burden of having those languages on the supercomputer.
Consequently, for our limited steering, we have chosen a loosely coupled
model that provides for flexibility in running the physics code on a
variety of architectures without requiring coupling the physics code to
the controller thereby obviating portability problems. Our approach -
ICF3D controlled by Python running on a local workstation - evokes a
distributed computing model, relegates supercomputers exclusively for
computations and leaves the problem generation and post-processing
chores to the desktop.

By taking advantage of Python’s extendability we have written scripts
that read the user’s (Python) input file that describes the problem,
generate and partition the mesh, direct code execution to the machine of
choice (by dispatching appropriate input files and recovering the output
files), and analyze the results. In addition, during execution we can query
the code’s progress, e.g., its time cycle and time step, create restart files,
create output visualization files, and halt and restart the calculation

3

at will. While this is not as flexible as a truly steerable code, it has
given us an invaluable means to develop and debug ICF3D and provided
easy access to the number cruncher of choice. The interface is the same
regardless of the computing engine, MPP or uniprocessor. Consequently,
the parallelization is completely transparent to the user. Once control
is returned to the user, results from an MPP are indistinguishable from
those from a uniprocessor.

One of the controller’s principal responsibilities is mesh generation.
Since the generation of unstructured 3D finite element (FE) meshes is a
difficult task, the controller provides the option of generating two types.
For unstructured, Cartesian, tetrahedral grids, the controller uses the
LaGriT code [Z] of the Los Alamos National Laboratory and for MPP
runs, LaGriT is linked to the METIS code [3] of Karypis and Kumar to
partition the mesh into a collection of subdomains, one per PE. Python
scripts and C++ functions interface with the FORTRAN LaGriT code
and the METIS code, written in C.

The second type of mesh is logically structured; each vertex corre-
sponds to a (Ic, I, m) triplet of positive integers. Such meshes may be
constructed in any of the three coordinate systems allowed in ICF3D,
Cartesian, cylindrical, or spherical. For MPP runs, these meshes are eas-
ily decomposed by slicing along any of the (k, 1, m) logical planes. An
additional flexibility is allowed whereby the user may describe the mesh
in one coordinate system and instruct the controller to generate it and
run the problem in another. For example, with one function call, the
user discretizes a sphere into uniform radial concentric spherical shells
with uniform polar, and azimuthal angles, and gets the grid in Cartesian
coordinates. In this case, the controller automatically removes duplicate
copies of the center point and those along the axis and constructs cells of
all admissible types: tetrahedra, pyramids, prisms and hexahedra. After
the conclusion of the run, the controller reformats the results into the
user’s original coordinates which eases visualization of the results.

We emphasize that the duality of meshes, structured and unstruc-
tured, is limited to the controller. The physics code is based on only un-
structured grids. The ICF3D input file describing the mesh is in the Ad-
vanced Visual System (AVS) Unstructured Cell Data (UCD) format [4].
For MPP runs, the format is extended by tagging each cell with the PE
number which “owns” it, and both cells and vertices are assigned unique
“global” indices.

3 ICFSD physics code
ICF3D stems from an effort to apply the discontinuous finite element
(DFE) method to solve the Euler equations for compressible hydrody-
namics. For early work on DFE, we refer to works of Cockburn et al, [5],

4

[6], and [7]. Details of the ICF3D hydrodynamic scheme and early results
on 3D problems are given by Kershaw et al [8].

After the initial successes on hydrodynamic test problems, the code
was expanded to include equations-of-state of real materials, laser en-
ergy deposition, heat conduction, and radiation transport. The first de-
scription of ICFSD as a physics design code was given by Shestakov et
al [9]. The code modules were later parallelized to take advantage of the
promise of modern supercomputers with hundreds, eventually thousands
of PEs. Shestakov and Milovich [lo] describe the parallelization of the
hydrodynamic and diffusion modules while Shestakov et al [II] describe
the entire parallelization strategy, including the laser ray tracing mod-
ule. The parallelization does not inhibit portability; the same code runs
on uniprocessors, and both types of MPP: distributed as well as shared
memory architectures.

ICF3D solves equations for the conservation of mass, momentum, and
total matter energy densities, p, pv, and E:

(1) &p+V-F, = 0,

(2) &(Pv) + V.F,v = pg ,

(3) &(E)+V+FE = pg~v+H,+S,+K,,;.

Equation (3) is coupled to the transport (diffusion) equation of the
radiation field energy density

(4 dE,./dt = V.D,,.VE, - E(,., .

In (l), (Z), and (3), Fi denotes the flux of i, i.e., F,,, = pw,v + p, where
ZI, is the z velocity component and p is the pressure. In (2) and (3), pg
represents an external force density. In (3), E denotes the matter internal
energy, and H, is the negative divergence of the heat flux,

H,=V.D,VT,

where D, is the thermal coefficient, and T is the matter temperature.
The term S, is an external source of energy (e.g., due to a laser), KrE
denotes the radiation-to-matter coupling. In (4), d/dt is the Lagrangian
derivative, and D, is the diffusion coefficient of the radiation field.

The equations are solved using operator splitting. The time cycle
begins by solving the hyperbolic conservation laws, i.e., (1) to (3) with
the rhs, except for the pg terms, set to zero. Next, material properties
such as the specific heat,

&/aTlp = cv

are computed. If the problem involves laser energy deposition, that
module then tracks the beams through the domain and computes the

5

energy source S,. After determining SE, the heat conduction module
advances the equation,
(5) c,&T = HE -I- S, .

Heat conduction is followed by the final operation, radiation transport
and coupling to the matter temperature. This effect is simulated by
simultaneously advancing (4) and

c&T = KT, .

The radiation-to-matter coupling is given by,

Km = -cm@(T) - ET) ,

where c is the speed of light, up is the Planck averaged opacity, and
S(T) = (4a/c) T * is the spectral average of the Planck function, 0 is the
Stefan-Boltzmann constant.

Operator splitting lets us compartmentalize the operations and
thereby reuse modules written for simpler equations. For example, the
original ICF3D hydrodynamic scheme is unchanged. A separate laser en-
ergy deposition module of Kaiser et al [la] computes S,, and a diffusion
module discretizing equations of the type,

(6) g&u = V. DVu - au -I- s

advances (4) and (5).
ICF3D is written in the 00 programming language C++ and the

pdes are discretized using FE. These two features complement each other
nicely. For example, in both the DFE and standard FE methods, one
computes integrals of the type

s fdv c
where, C denotes a computational cell. Thus, once one cell integrator is
written, it may be used (called) by other modules.

The modularity extends to a low level. Using the C++ lexicon, the
ICFSD mesh is described in terms of cell, face, and vertex objects, made
at the start of the run by the constructor for the appropriate class. The
concept of inheritance is used by allowing different cell types: tetrahedra,
pyramids, prisms, and hexahedra. Similarly, two types of faces arise:
triangular and quadrilateral. Since the mesh is allowed to move (the
hydrodynamic scheme is ALE), the cells are allowed to distort and the
quadrilateral faces need not be planar. When integrating a function f
over the entire domain, we cycle through the cells and use (7). Each cell
knows its type and calls the appropriate Gaussian formula to approximate
the integral. A similar procedure is used for integrals over cell faces.

6

3.1 Numerical details
Except for the novel DFE scheme for the hydrodynamics, ICF3D uses a
standard Galerkin formulation for the spatial discretization of parabolic
equation. Equations such as (6) are advanced using backward Euler
except the coefficients g, D, and a are fixed at the previous time level.
The function u is given in terms of the usual piecewise “linear” basis
functions,

u(Lc, P) = c qqx) uj”
j

The number of unknowns equals the number of vertices and we use an
isoparametric mapping to compute integrals such as (7). Hence, on tetra-
hedra, u is linear, while on hexahedra, ZL has a trilinear representation.
The discretization leads to large, sparse, SPD linear systems. Since the
diffusion equations advance inherently positive quantities, we lump ev-
erything but the transport term in order to obtain an M matrix [9]. On
uniprocessors, the systems are solved using ICCG. On MPP, we use an
ICCG variant in which the preconditioner neglects coupling across inter-
PE boundaries [lo], [ll].

The DFE hydrodynamic scheme differs from the above since it
allows for discontinuous functions. The scheme is compact. Instead of
integrating over the entire domain, the hydrodynamic system is multiplied
by a test function, and integrated only over a cell. The flux divergence
term is integrated by parts yielding two integrals,

The first integral on the rhs of (8) is a sum of the contributions from
each cell’s face and represents the flux across the face from the cells on
either side. Thus, the rhs is computed by first looping over the faces and
solving the appropriate Riemann problems, then looping over cells [8].
The discontinuity arises since hydrodynamic variables such as p vary
within each cell, but are discontinuous across the faces. For a first order
scheme, this reduces to cell-centered variables, and is an extension of the
method of Godunov [13]. The ICF3D second order scheme, has hefty
storage requirements. Because of the allowed discontinuities, for each
hydrodynamic variable, the number of unknowns equals the number of
cells times the number of vertices of each cell. Thus, for a mesh consisting
of N, similar cells, with N, vertices per cell, since both the conserved
variables: p, (pv), and (pE) and the fundamental ones: p, v, and p and
their cell averages are stored, the hydrodymanic scheme alone requires

(9) (10 x N, + 10) x NC

locations to store one time level. Even though (9) could be reduced
by not storing the nodal p variable twice and by using nodal values to

7

recompute the cell averages (needed in several places in the code), the
storage requirement is still large.

3.2 Parallelization
Since this subject has already been discussed in [lo] and [ll], here we
present only an overview. ICF3D parallelizes by decomposing the domain
into a collection of disjoint subdomains, one per PE. Each PE receives
a description of its subdomain (comprised by its owned cells) and a
surrounding one cell-wide layer of ghost cells owned by other PEs. There
is no restriction on the shapes of the subdomains (SDS) and indeed with
NIETIS and unstructured grids, the SDS have ragged boundaries.

The PEs communicate using functions from the NIP1 message passing
library. The actual calls are made by member functions of special message
passing objects (MPO) which ICFSD constructs at start-up.

Since ICF3D has both a cell-centered scheme (hydrodynamics) and
vertex centered (diffusion), there are two distributed mesh entities, cells
and vertices. The input files tag each cell with the number of the PE
which owns the cell. Vertex PE assignment is done by ICFSD during the
initialization phase. This procedure itself requires some message passing
since the algorithm that assigns a vertex to a PEs is based on a survey
of all cells attached to the vertex.

The domain decomposition strategy and the ICF3D code modules
lead to four different parallelization difficulties:

1. Embarrassingly parallel functions such as the cell-based equation-
of-state calls which do not require message passing.

2. Straightforward parallelization of the temporally explicit hydrody-
namic scheme in which the “difference” stencil extends only over
immediate neighbor cells. This is resolved by the ghost cells which
store the latest information message-passed to the PE.

3. Functions requiring global communication, e.g., solution of the
large, sparse, unstructured linear systems arising from the dis-
cretizations of the diffusion equations. The systems are solved using
preconditioned CG [lo].

4. Unpredictable point-to-point communication arising in the paral-
lelization of the laser energy deposition module in which each laser
beam is discretized into a collection of rays or particles which tra-
verse the mesh and deposit energy on the cells. The parallelization
consists of collecting the rays as they cross the SD boundary and
passing them to the PE which owns the neighboring cells.

8

4 Results
To illustrate one aspect of ICF3D’s capability, we present a problem using
only the hydrodynamic module. Although the problem is simple, in fact,
has spherical symmetry, we simulate in both 1D spherical model with a
structured grid and in 3D, Cartesian mode on a unstructured tetrahedral
grid to demonstrate ICF3D’s versatility and robustness

Since the problem has simple physics and uses only one module,
readers interested in the performance of other code modules should
consult the following references: Initial performance of the parallelization
of the hydrodynamic and linear system solver appear in [9]. Results on
a problem coupling hydrodynamics to non-linear heat conduction appear
in [14] and [lo]. I n ref. [14], ICFSD was run in 1D spherical mode in both
Lagrangian and ALE modes in which the grid points were restricted to
move at half the fluid velocity. In ref. [lo], the same problem was run
on an unstructured tetrahedral grid in Cartesian geometry on a parallel
machine using 64 PEs and results compared favorably to the finely meshed
spherical runs. In ref. [II], the hydrodynamic, heat conduction, and
laser deposition modules were combined to simulate the implosion of a
spherical gas bubble driven by twelve laser beams centered on the vertices
of an icosahedron. Lastly, a simulation of an ICF capsule which uses real
material equations-of-state, hydrodynamics, realistic heat conduction,
and radiation transport appears in [15]

Here, the problem consists of an imploding, spherical shock wave of
infinite strength. Even though the problem is spherically symmetry, it is
of interest since it is so difficult for 3D codes to maintain symmetry of
the converging wave. In addition, codes limited to structured grids have
the added burden of carrying the resolution (number of cells) needed on
the outside of the sphere on the waist to the pole and center, e.g., if
discretizing a sphere into uniform polar and azimuthal cells. This brings
the additional complication of restrictive time steps due to the Courant
condition as the wave reaches the center.

Unstructured grids relieve these complications since with such meshes
one freely puts resolution where needed. In Fig. 1 we display the
computational domain, a tetrahedal wedge of a regular icosahedron
bounded by the sphere of radius ~0, the two azimuthal planes: 4 = &:n/5,
and the plane intersecting the origin and the points: (0, b) = (00, &7r/5)
where cos 8s = l/A Such a domain allows us to easily view the
progression of the implosion, maintain resolution where its desired, yet
allow enough freedom for the implosion to lose symmetry with a poor
numerical scheme. Nevertheless, even with the unstructured grid, the
problem is relatively large. Equation (9) implies that there are nearly
300,000 unknowns.

‘In 3D spherical coordinates with one cell in each of the angular direction

9

FIG. 1. 30 Domazn of ideal gas implosion problem. Shading designates
PE numbers. Grid consists of 28,208 tetrahedra (50 radial cells), 5791 points,
and 58,455 faces.

The implosion results when a spherical gas bubble, initially of radius
To = 1.0 , is subjected to a boundary pressure of magnitude pb = 4/3
The gas equation-of-state is specified using,

p = (y - 1) PE where y = 5/3

The initial conditions mimic a cold, quiescent gas, initially of unit density,

po = 1 and pU = v,, = 0

The gas motion results from the difference between pb and pe. Initially,
the solution is similar to one with slab symmetry. The boundary pressure
drives a shock into the gas which at first moves with speed f, G -4/3
Since the shock is of infinite strength, immediately behind the shock,

p= y+l ---pa and v, = -1
“/+I

If the problem stayed slab-symmetric, the shock would traverse a unit
distance in a time of 0.75 sets. However, because of the converging
geometry, the shock reflects off the origin at an earlier time which a
1D simulation places at t N 0.57. In Fig. 2 we display p at t = 0.56, 0.58,
and 0.6 for a finely meshed, spherical ID run and also display p at t = 0.6
for two coarser discretizations. Results show that the coarsest mesh (50

10

density vs. distance

I I_
t = 0.58

A-C: 200 cells -

n
t = 0.8 D: 100 cells 1

E: 50 cells 1 - - - - - - - - - - - - - --L - -
I I I I I I I I-

0:i 012 013 014 0:5

FIG. 2. Ideal gas implosion; p vs. r. Lagrangian, ID simulations
initially uniform cell widths. Curves A, 3, and C are at t = 0.56, 0.58,
0.6 resp. and use 200 cells. Curves D and E are at t = 0.6 and use 100
50 cells resp.

with
and
and

cells) suffices to obtain relatively good accuracy, especially if we compare
the shock’s position.

The 3D simulation is run on an unstructured grid discretizing the
icosahedral wedge depicted in Fig. 1 in which the shading corresponds to
the PE number. The simulation was done on 64 PEs of the LLNL IBM
SP2 and ran until t = 0.9 at which time the reflected shock had interacted
with the incoming outer boundary. Figure 3 displays a side-on view of p
at t = 0.6

A comparison between Figs. 2 and 3 shows that max(2) and the
shock position are very similar and the min(p) also agree while the
max(p) are within 6% of each other since in the 1D result with 50 cells,
max(p) = 27.46 Lastly, Fig. 3 shows the code’s ability to maintain
spherical symmetry, despite running on the asymmetric tetrahedral grid.

5 Summary
We have presented a general overview of the ICF3D code system, a
parallel, 3D, unstructured-grid FE code linked to an interactive controller.
The code system gives the user great flexibility by allowing the physics
computing engine to run on the workhorse computer of choice while
having the comforts of an interactive intialization of problems and
interpretation of results at a desktop workstation. In designing the
system, we strived for portability. All that is required for ICF3D is

11

FIG. 3. Ideal gas implosion; side-on view of density; t = 0.6 set;
max(Z) = 0.563

a C++ compiler and a UNIX operating system (OS) to enable linking
across the network. The desktop, which runs the controller, needs more
software support, specifically a Python interpreter, the ability to compile
FORTRAN, C, and C++ codes, and again a UNIX OS to link with
ICF3D.

ICF3D was designed to simulate ICF experiments and is written
in modular form with separate hydrodynamic, equation-of-state, laser
energy deposition, heat conduction and radiation transport packages.
The modules may be turned on and off more-or-less at will which allows
us to run problems in which only some of the physics is relevant.

However, since we use robust numerical methods, ICF3D is extendable
to other problems. For example, since both the heat conduction and
radiation transport packages advance diffusion equations, non-linear
elliptic equations may also be solved if the elliptic operator has the same
form as the rhs of (6).

[l] Seehttp://vww.python.org
[2] See http://www.tiZ.lanl.gov/-lagrit
[3] G. KARYPIS and V. KUMAR., A Fast and High Quality Multilevel

Scheme for Partitioning Irregular Graphs, SIAM J. Sci. Camp., 20, 1
(1998) pp. 359.392. The METIS code is available on the web at:
http://www-users.cs.umn.edu/“karypis/metis/metis/main.html

[4] AVS Developer’s Guide, Advanced Visual Systems, Inc., Release 4, May
1992, p. E-l, 300 Fifth Ave., Waltham MA 02153.

12

[5] B. COCKBURN and C.-W. SHU - TVB Runge-Kutta Local Projection
Discontinuous Galerkin Finite Element Method for Conservation Laws II:
General Framework, Math. Comput. 52, 146 (1989) 411.

[6] B. COCKBURN, S.-Y. LIN, and C.-W. SHU - TVB Runge-Kutta
Local Projection Discontinuous Galerkin Finite Element Method for
Conservation Laws III: One-Dimensional Systems, J. Comput. Phys. 84
(1989) 90.

[7] B. COCKBURN, S. HOU, and C.-W. SHU - TVB Runge-Kutta Local
Projection Discontinuous Galerkin Finite Element Method for Conserva-

7 tion Laws IV: The Multidimensional Case, Math. Comput. 54, 146 (1990)
545.

[8] D.S. KERSHAW, M.K. PRASAD, M. J. SHAW, and J.L. MILOVICH, 3D
Unstructured mesh ALE hydrodynamics with the upwind discontinuous fi-
nite element method, Comp. Meth. in App. Mech. Engin., 158 (1998) 81.

[9] AI. SHESTAKOV, M.K. PRASAD, J.L. MILOVICH, N.A. GEN-
TILE, J.F. PAINTER, and G. FURNISH - The Radiation-
Hydrodynamic ICF3D Code , Lawrence Livermore National Lab-
oratory, Livermore, CA, UCRL-JC-124448, (1997), to appear in
Comp. Meth. in App. Mech. Engin.

[lo] A.I. SHESTAKOV and J.L. MILOVICH - Parallelization
of an Unstructured Grid, Hydrodynamic-Diffusion Code, in
Solving Irregularly Structured Problems in Parallel, 5th International
Symposium, IRREGULAR’98 Berk., Ca., USA, Aug. 9-11, 1998
Proceedings, A. Ferreira, J. Rolim, H. Simon, S.-H. Teng (Eds.)
Lecture Notes in Computer Science 1457 Springer.

[ll] A.I. SHESTAKOV, J.L. MILOVICH, and D.S. KERSHAW - Paralleliza-
tion of an Unstructured Grid, Hydrodynamic-Diffusion Code, submitted
to SIAM News, contact: shestakov@llnl . gov

[12] T.B. KAISER, J.L. MILOVICH, AI. SHESTAKOV and M.K. PRASAD,
A New Laser Driver for ICF Physics Modeling Codes on Unstructured 3D
Grids, Bull. Am. Phys. Sot., 43, 1900 (1998).

[13] S.K. GODUNOV, Mat. Sbornik 4 (1959) 271 [translated as JPRS 7225
(U.S. Dept. of Commerce, Washington DC, 1960)].

[14] A.I. SHESTAKOV, Time Dependent Simulations of Point Explosions with
Heat Conduction, Lawrence Livermore National Laboratory, Livermore,
CA, UCRL-JC-132414, (1998), to appear in Phys. Fluids A.

[15] A.I. SHESTAKOV, J.L. MILOVICH, M.K. PRASAD, and T.B. KAISER,
Combining Cell and Node Centered Methods for Parallel, 3D,
Unstructured-Grid Radiation-Hydrodynamic Codes, to be submitted to
J. Comp. Phys., contact: shestakov@llnl. gov

